Water balances for MUS in Colombia

Isabel Cristina Domínguez Cinara/WEDC

MUS Meeting 22/23 November 2010

Content

- Background
- Conceptual framework
- Water balance for MUS: La Palma Tres Puertas case study
 - Methodology and results
 - Conclusions

Background

- MSc project supervised by Mr. Ian Smout from WEDC, Loughborough University
- Previous studies on MUS in the case study area
- Intended contributions to the knowledge in the topic:
 - Necessity to combine qualitative and quantitative methods to understand demands for MUS, integrating knowledge and tools from different disciplines
 - Increase the knowledge on the supply side on MUS, introducing the green water branch to the process of planning for the blue water branch
 - Address equity issues: how different users benefit from the possibility to use the water for productive activities within the system

Conceptual framework

Water balances for MUS: La Palma Tres Puertas case study

The case study area

- Households: 437
- Main livelihoods : agriculture and animal husbandry
- Water service coverage: 100%
- Intermittent service
- Storage tanks at household level
- Water committee in charge of management
- Differentiated water tariff according to consumption

System boundaries, inflows and outflows

Temporal boundaries: June – July 2010

Water availability - inflows (I)

- Water supply
 - Measurement of the water entering to the centralized storage tank of the water supply system
 - Five days during the analysis period
 - Volume supplied was calculated as the average of the data taken

Water availability - inflows (II)

- Rainfall
 - Obtained from records of a Climate Station located in the area
 - Total rainfall during the period was 169,5 mm

Water demand - outflows (I)

Two sources of information

- Household survey to collect information significant for a "disaggregated" demand estimation
 - Household size
 - Total area of the household
 - Cropped area by type of main crops
 - Number of animals per species
- Records from household meters

Balance adjustment

Blue water branch

THC = DC + LC + CPC + SBC + CBWC + other

Green water branch

P = CGWC + DW + GW

Where:

THC = Total Household Consumption provided

from meters records

DC = Domestic Consumption

LC = Livestock Consumption

CPC = Coffee Processing Consumption

SBC = Small Business Consumption

CBWC = Crop Blue Water Consumption

Where:

P = Precipitation

CGWC = Crop green water

consumption (irrigated + rainfed)

DW = Downstream

GW = Groundwater

Water demand - example of some outflows estimation

Water Use	Formula	Variable	Factor
Domestic consumption (DC)	DC = Household size × Domestic percapita consumption $\times \frac{60}{1000}$	Household size	
		Domestic per capita consumption (lpcd)	
Livestock consumption (LC)	$LC = \left(\sum_{n=1}^{N} N_{n} \right)$	Number of cows	40 l/head*day
	$= \left(\sum_{i=7}^{N \text{ with ber of unimats especte}_i} \right)$	Number of chickens	0,15 l/head*day
	* Water consumption factor especie.	Number of pigs	20 l/head*day
	$\times \frac{60}{1000}$	Number of horses	20 l/head*day
Coffee processing consumption (CPC)	CP = Productivity factor	Water consumption system factor	0,0042 m ³ /KgPC
	imes Water consumption system factor	Productivity factor	0,035 KgPC/m ²
	\times Cropped area $\times \frac{60}{1000}$	Cropped area (m ²)	
Crop green water consumption (CGWC)	$CGWC$ $= \sum_{i=14}^{2} Area \ crop_i$ $\times \ Green \ water \ consumption \ factor \ c$	Cropped area with coffee	0,1465 m/period
		Cropped area pineapple	0,0465 m/period
		Cropped area beans	0,0705 m/period
		Cropped area maize	0,1465 m/period
		Cropped area vegetables	0,1465 m/period
		Cropped area <i>pitaya</i>	0,0837 m/period
		Cropped area <i>lulo</i>	0,1465 m/period

Results at the system level

Crops

Coffee processing

Green water rainfed cropsGreen water irrigated crops

Green water - Rainfall distribution

Results at the household level

- Per capita domestic consumption varied from 88 to 109 lpcd
- Per capita consumption for productive purposes varied from 19 lpcd to 413 lpcd

Conclusions

- Water balance concepts and budgets probed to be flexible tools to:
 - Understand the dynamics of the hydrological cycle and the human cycle in a MUS system
 - Suit the objectives of a study, scale, and availability of information
 - The stratified analysis allowed estimating water consumption for domestic and productive uses, making clear differences between categories of subscribers within the system

Other initiatives - MUS guidelines

- Book "Guidelines to design and manage of multiple uses of water supply systems for rural areas in Colombia" by Inés Restrepo, Isabel Domínguez, Silvia Corrales and Sandra Bastidas published by Universidad del Valle in 2010.
- Structure of the guidelines

Concrete principles, activities and tools to address during planning and management for MUS:

- •Equity and poverty reduction
- •Multiple uses
- •Multiple sources
- •Sustainable use of water
- •Technological alternatives
- •Cost recovery
- •Tariffs and management rules

Thank you !!!

Project report available at MUS website: <u>http://www.musgroup.net/</u> Contact: <u>isabel_doming75@hotmail.com</u>